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3D defect detection of connectors based on structured 
light* 
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In order to realize the rapid detection of three-dimensional defects of connectors, this paper proposes a method for de-

tecting connector defects based on structured light. This method combines structured light with binocular stereo vision 

to obtain three-dimensional data for the connector. Point cloud registration is used to identify defects and decision trees 

are used to classify defects. The accuracy of the 3D reconstruction results in this paper is 0.01 mm, the registration ac-

curacy of the point cloud reaches the sub-millimeter level, and the final defect classification accuracy is 94%. The ex-

perimental results prove the effectiveness of the proposed three-dimensional connector defect detection method in 

connector defect detection and classification. 
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The defect of the connector is an important factor affect-
ing the safety of industrial production. Common defects 
such as missing pin, broken pin, and curved pin would 
cause damage to the connector, which not only shortens 
the life of the part, but also poses a potential serious 
safety hazard to industrial generation. Therefore, the re-
search and development of automatic detection methods 
for connector defects is very important. Over the past 
two decades, the use of two-dimensional imaging tech-
niques to detect small defects has matured. However, 
there are still some problems that have not yet been re-
solved. Der-Baau Perng uses a Fourier transform based 
defect recovery technique to detect thread defects[1]. 
However, the defect detection that can only be imple-
mented by this method cannot be used in complex scenes. 
Chung-Feng Jeffrey Kuo uses the K-means clustering 
method to distinguish the appearance, pad area and illu-
minating area of the chip[2]. The effective two-step back 
propagation neural network identifies the features of 
each part and completes the defect detection. The recog-
nition effect depends on a large number of samples to be 
tested, so it is necessary to collect a large number of de-
fect detection samples to ensure the recognition accuracy. 
Compared with the traditional method, the non-contact 
optical 3D measurement method can greatly improve the 

detection accuracy, and is an important key technology 
to improve quality and productivity[3-5]. Mei-Chin Lee 
proposed an application of X-ray computed tomography 
in nondestructive testing of 3D-IC packages[6]. However, 
this method is costly and insufficient in accuracy. Wei Z. 
uses the principle of laser interference to obtain the 
height of BGA packaged chips[7]. However, the laser 
interferometry is slow and cannot be used in real time. 

This paper designs a three-dimensional detection sys-
tem combining binocular camera and structured light. 
The traditional binocular stereo vision method has a poor 
reconstruction effect for scenes with less texture features. 
Combining binocular stereo vision and structured light, 
this method can add features to the reconstructed object, 
and effectively result in the occlusion problems in mo-
nocular vision, reduce the complexity of matching and 
achieve high-precision matching. Then a 3D connector 
defect detection method is proposed. The method first 
extracts the point cloud of the connector and then calcu-
lates the deviation between the defect point cloud and the 
standard point cloud model. Thereafter, for the defect 
data, the stitch is segmented using the K-means cluster-
ing algorithm and the feature for extracting each stitch 
data is extracted. Finally, a decision tree classifier is used 
to identify the type of pin defect.  
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The key technologies of 3D pin connector defect de-
tection include the 3D data acquisition and 3D point 
cloud processing aspects. To obtain high-precision 3D 
data，this paper uses the TWPSP method[8] to get 3D data 
of the pin connector. The TWPSP method, three fringe 
patterns with proper wavelengths are projected on the 
object, and the wrapped phase can be obtained with the 
three proper wavelengths directly, i.e., the calculations of 
the equivalent wavelengths and their corresponding 
phase maps are not needed. The advantage of this meth-
od is that it is not necessary to superimpose the phases of 
different wavelengths to obtain an equivalent phase map 
of a higher wavelength, and it is possible to directly ob-
tain the wrapped phase at three suitable wavelengths, 
thereby reducing the effects of noise and reducing the 
reconstruction time. 

Assuming that modulated images acquired by the 
camera are denoted by Ik, the six-step phase-shift method 
adopted in this paper can be described by  
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where A(x, y) is the background light intensity, B(x, y) is 
the modulation light intensity, and ϕ(x, y) is wrapped 
phase. 

For the existing three wavelength phase shift pro-
filometry method, it uses wavelengths of λ1=21 pixels, 
λ2=18 pixels and λ3=16 pixels as the modulation wave-
length of the projected fringes. Based on these three 
basic wavelengths, longer equivalent wavelength 
λ12=126 pixels, λ23=144 pixels, λ123=1 008 pixels can be 
calculated. Equivalent wavelengths can be calculated by  
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This paper directly selects λ1=1 008 pixels, 
λ2=144 pixels and λ3=16 pixels as the modulation wave-
length of projected stripes and corresponding phase value 
ϕi(x, y) can be expressed by  
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where ϕi(x, y) belongs to [−π, +π]. 
The absolute phase Φ3 of λ3 can be calculated by  
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When ϕ3(x, y)=2π, phase jump will occur, and Φ3 is cor-

rected as 
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The main workflow of defect detection is shown as 
Fig.1. The first is to preprocess the data, including filter-
ing and downsampling. The registration part is to extract 
the fast point feature histograms (FPFH) of the point 
cloud, use the SAC-IA algorithm for coarse registration, 
and then use the iterative closest point (ICP) algorithm 
for fine registration to determine whether there are de-
fects based on the registration results[9,10]. Finally, the 
K-means clustering algorithm is used to cluster the pins 
and extract the parameter matrix of each pin region. The 
decision tree classifier is used to classify the defects.  

 

 

Fig.1 Process of the defect detection 
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Due to the influence of various artificial or random 
factors in the actual measurement process, irrational 
noise points will inevitably be mixed in the actual data. 
This paper uses a statistical-based filtering algorithm to 
filter the noisy data in the data. To be able to process data 
quickly and find defects, the original data must also be 
simplified. Therefore, under the premise of ensuring 
subsequent registration accuracy, the point cloud data is 
down-sampled. 

Point cloud data registration can be divided into two 
parts: initial registration and precise registration. Differ-
ent registration algorithms have different registration 
effects. In this paper, SAC-IA algorithm is used for initial 
registration and ICP method is used for accurate registra-
tion, so as to accurately locate the defect area. 

The SAC-IA algorithm relies on point feature histo-
grams (PFH). In order to improve the calculation speed, 
this paper calculates the FPFH of point cloud data. FPFH 
uses the estimated point cloud normal features to calcu-
late the spatial difference between this point and its K 
domain points. After the data features are extracted, the 
next step is to match the data to be detected with the 
template data to obtain a rigid transformation matrix. 

After using the SAC-IA algorithm for registration, the 
two point clusters roughly coincide, but there is still a 
deviation. In order to improve the matching accuracy 
between the two point clouds, it is necessary to perform 
accurate registration. The ICP algorithm is a widely used 
algorithm for fine registration and has a good conver-
gence effect. The core goal of the ICP algorithm is to 
find the point with the smallest Euclidean distance in Q 
and P to obtain the transformation matrix. The mini-
mized objective function can be obtained by 
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where R is the rotation matrix and T is the translation 
matrix, using the obtained transformation matrix to 
transform the target point cloud.  

After registering the point cloud to be detected with 
the standard point cloud, the mean Euclidean distance 
(MED) deviation between the two point cloud data is 
calculated. That is, for each point p in P, the distanced of 
that point to the nearest point in Q is calculated. The 
MED can be obtained by  
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where n is the number of point cloud. 
It can be determined whether the current connector to 

be tested is defective. If there are defects, the K-means 
clustering algorithm is used to segment the connector pin 
data, and the minimum circumscribed rectangle and cen-
ter of the defect area of each pin are calculated, as well 
as the average height of the pins in the region relative to 
the reference plane and data such as curvature and num-
ber of point clouds. 

Usually, a missing pin defect is an empty location 
where the pin should exist. Therefore, the missing pin 
defects can be distinguished by judging the number of 
point clouds divided at this position. It is difficult to 
judge the curved needle defect and broken needle defect. 
Among these two types of defects, the broken needle has 
a noticeable height drop, and the number of point clouds 
is similar to the normal point cloud. In the case of curved 
pin, in the case of vertical scanning, the measurement 
area is large, so the number of point clouds is large, and 
the curvature of the point cloud data is very different 
from the standard data. It can be known that different 
judgment conditions are not continuous. Based on these 
judgments, a decision tree (DT) is used to classify the 
defects, and its structure is shown in Fig.2[11]. 

 

 

Fig.2 Decision tree composition 

 

Fig.3 is the overall design structure of a 3D structured 
light measurement system. Among them, a type III inde-
pendent optical projector with a resolution of 1 280×720 
is used to project a sinusoidal stripe pattern with three 
different wavelengths. The three sinusoidal light periods 
are 1 008 pixels, 144 pixels and 16 pixels, respectively. 
Two industrial cameras (MV-CE050-30GM) send a 
2 592×1 944 grayscale image to a computer at a frame 
rate of 14 frames per second. The angle of the two indus-
trial cameras is 60°. Industrial cameras use a 16 mm 
(M1614-MP) lens. The model diagram of the main 
equipment is shown in Fig.3. When measuring connector 
data, the system is about 20 mm away from the measured 
object. The measurement range of this system is about 
200 mm. 

In order to further verify the accuracy of the 3D 
measurement system used in this paper, we adopted the 
traditional phase unwrapping method and the method 
proposed in this paper to project a calibration ball with a 
diameter of 20 mm. And use Geomagic studio to calcu-
late the deviation between the radius of the fitted sphere 
and the standard sphere and the root mean square (RMS) 
error of the distance from each point to the fitted sphere. 
The comparison graph is shown in Fig.4 and the com-
parison results are shown in Tab.1. As shown in Tab.1, 
the radius error of the calibration sphere and the RMS 
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error of the sphere fitting obtained using the improved 
method are 0.008 3 mm and 0.016 1 mm, respectively. 
The TWPSP method is superior to traditional methods in 
radius error and RMS error, which fully proves the supe-
riority of this method. 

 

Fig.3 The 3D structured light measurement system 

 
In order to further verify the accuracy of the 3D 

measurement system used in this paper, we adopted the 
traditional phase unwrapping method and the method 
proposed in this paper to project a calibration ball with a 
diameter of 20 mm. And use Geomagic studio to calcu-
late the deviation between the radius of the fitted sphere 
and the standard sphere and the root mean square (RMS) 
error of the distance from each point to the fitted sphere. 
The comparison graph is shown in Fig.4 and the com-
parison results are shown in Tab.1. As shown in Tab.1, 
the radius error of the calibration sphere and the RMS 
error of the sphere fitting obtained using the improved 
method are 0.008 3 mm and 0.016 1 mm, respectively. 
The TWPSP method is superior to traditional methods in 
radius error and RMS error, which fully proves the supe-
riority of this method. 

 
 
 
 
 
 
 

(a) The traditional method    (b) The TWPSP method 
Fig.4 Geomagic studio sphere fitting comparison 

 
Tab.1 Data comparison of fitting results 

Method Radius error (mm) RMS (mm) 

The traditional method 0.013 7 0.031 4 

The TWPSP method 0.008 3 0.016 1 

 
The connector shown in Fig.5 is used as an experi-

mental sample to verify the detection method mentioned 
in this article. The specific parameters of the experi-
mental sample are as follows: the height of the plastic 
body is 8.5 mm, the length of the pins is 3.00 mm, there 
are a total of 16 pins, and the distance between adjacent 

pins is 2.54 mm.  
 
 
 
 
 
 
 
 
 

Fig.5 Parametric model of the connector 
 
In order to verify the effectiveness of the registration 

algorithm, three registration algorithms were compared, 
including ICP algorithm based on FPFH features, ICP 
algorithm based on PFH features, and a combination of 
normal distribution transform (NDT) and ICP registra-
tion methods[12]. The registration results are shown in 
Tab.2. Among them, the NDT+ICP method takes the 
shortest time, but has the lowest registration accuracy. 
Both the FPFH+ICP and PFH+ICP methods have a ro-
tating mean absolute error (MAE) of 0.002 4. The regis-
tration times of FPFH+ICP and PFH+ICP are 1.984 s and 
3.525 s, respectively. It can be seen that with similar er-
rors, the time consuming of FPFH+ICP is shorter. The 
data show that the performance of FPFH+ICP is better 
than the other two methods. 

 
Tab.2 Comparison of different registration methods 

 PFH+ICP NDT+ICP FPFH+ICP 

X axis rotate error (mm) 0.002 8 0.005 1 0.004 3 

Y axis rotate error (mm) 0.004 2 0.006 8 0.001 5 

Z axis rotate error (mm) -0.000 3 0.000 1 0.001 3 

Rotating MAE (mm) 0.002 4 0.004 0 0.002 4 

X axis translation error (mm) 0.000 1 0.000 1 0.000 1 

Y axis translation error (mm) 0.000 1 0.000 3 0.000 2 

Z axis translation error (mm) -0.000 1 -0.000 3 -0.000 3 

Translation MAE (mm) 0.000 1 0.000 26 0.000 2 

Coarse registration time (s) 3.401 0.361 1.891 

Fine registration time (s) 0.125 0.191 0.093 

Total registration time (s) 3.525 0.544 1.984 

 

The registration results are shown in Tab.3. It can be 
seen from Tab.3 that the MED between the defective 
connector and the standard connector is higher than 
0.1 mm. It can be preliminarily judged that the connector 
to be tested has defects. The MED of non-destructive and 
standard connectors is less than 0.1 mm. As shown in 
Fig.6, Fig.6(a) is a defective point cloud, and Fig.6(c) is 
a non-defective point cloud. The registration results ob-
tained by registering these two point clouds with the 
standard point cloud are shown in the Fig.6(b) and 
Fig.6(d). It can be seen that there are large differences in 
the registration results of defective point clouds, which 
verifies the calculation results of MED. The effectiveness
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of this method is proved. 

Tab.3 Comparison of registration results 

 
Defective con-

nector 

Nondestructive con-

nector 

MED (mm) 0.75 0.01 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.6 Registration results 
 

On this basis, in order to further verify the accuracy of 
the system's classification of connector defects, this arti-
cle collected 50 double-row female connectors (60 bent 
pins, 30 broken pins, 10 fewer pins) with different de-
fects as data.set. Pin defects are extracted from the cloud 
on the surface of the connector and are divided into three 
categories: missing pins, broken pins, and curved pins. 
The final classification results are shown in Tab.4. 

 
Tab.4 Classification results of pin defect 

Defect type 
Predicted 

Missing Broken Curved Total 

Actual 

Missing 10 0 0 10 

Broken 2 28 0 30 

Curved 1 3 56 60 

Total 13 31 56 100 

 
It can be seen from Tab.4 that the confusion matrix of 

the classification results obtained using the defect detec-
tion system constructed in this paper. The confusion ma-
trix is used to evaluate the accuracy and reliability of the 
classification. A total of 97 defects were correctly classi-
fied, which indicates that the overall classification accu-
racy is 94%. The classification accuracy of fewer needles 
is 100% because fewer needle defects have more obvious 
characteristics. The number of point clouds and the av-
erage height in this area have a larger deviation than the 
tolerance matrix, which makes it easier to distinguish. 
However, there is a certain error between the broken 

needle defect and the curved needle defect because the 
parameters of the curved needle and broken needle de-
fects are relatively similar, and it is more difficult to set 
the deviation threshold. Overall, the experimental results 
show that the classification method proposed in this pa-
per is effective and reliable. 

This paper uses a binocular structured light 3D meas-
urement system to accurately and efficiently obtain the 
point cloud data of the connector. An improved phase 
expansion algorithm is also proposed. The improved 
phase expansion algorithm can effectively avoid error 
propagation in the phase superposition process. On the 
other hand, the FPFH+ICP algorithm is used to achieve 
sub-millimeter registration accuracy, which makes it pos-
sible to quickly determine defects. In addition, the 
K-means algorithm is used to perform cluster segmenta-
tion on the defective pins. For each area, a decision tree 
classifier is used to identify the defect type of the pin. 
The experimental results show that the proposed detec-
tion algorithm can register the surface profile of the con-
nector with the standard connector data, determine 
whether there is a defect, and achieve good performance 
in defect classification. In future work, we will try other 
machine learning algorithms, such as SVM, to train the 
classifier to further improve the accuracy of classifica-
tion. 
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